Metal Complexes with Tetrapyrrole Ligands, $LXX^{[\diamond]}$

Synthesis, Characterization, and Variable-Temperature ¹H-NMR **Investigations of Cerium(1V) and Zirconium(1V) Double-Deckers Derived from 2,3,7,8,12,13,17,18-Octaethyl-5-methylporphyrin**

Johann W. Buchler" and Georg Heinz

Institut fur Anorganische Chemie, Technische Hochschule Darmstadt, Petersenstraße 18, D-64287 Darmstadt, Germany

Received September 1, 1995

Key Words: Cerium(IV) bis(porphyrinates) / Zirconium(IV) bis(porphyrinates) / Porphyrin, **2,3,7,8,12,13,17,18-octaethyl-5-methy1-** / Geometrical isomerism

The synthesis of **bis(2,3,7,8,12,13,17,lf3-octaethyl-5-methyl-** smatic coordination geometry found in metal(1V) bis(porphysandwich complexes show that they exist as a mixture of vici- **373** K. nal and transversal isomers due to the rigid square-antipri-

porphyrinato)cerium(IV) and -zirconium(IV) $[M(\text{oemep})_2]$; rinates). From the temperature dependence of the ¹H-NMR $M = Ce$, Zr , respectively) is described. The complexes were spectra the rotational rigidity of the double-decker system characterized by UVNis and IR spectroscopy and cyclic volt- was deduced. In toluene, free rotation of the two porphyrin ammetry. lH-NMR spectra of the new cerium and zirconium macrocycles with respect to each other does not occur up to

Porphyrin sandwich complexes $M(p)_2^{[1]}$ with tetravalent metals such as cerium^[2,3], uranium and thorium^[4], or zirconium and hafnium^[5,6] have been known for several years. They are investigated inter alia because they might be model systems of the special pair^{$[7,8]$} of bacteriochlorophyll molecules in the reaction center of bacterial photosynthesis^[9]. Strong π, π interactions between closely arranged porphyrin rings give rise to unusual absorption, fluorescence, redox, and electron-transfer properties^[10]. Although the electronic similarity of porphyrin sandwich complexes and the special pair has been doubted $[11]$ these double-deckers can be regarded as structural and electrochemical model systems which display effective overlap of the π electron systems of two tetrapyrrole systems resulting in a facilitated oxidation of the porphyrin ligands as compared with the appropiate monoporphyrinates $[7]$. This facilitation of the electron abstraction is the essential result of the close vicinity of two porphyrin rings.

In the solid state a square antiprismatic coordination geometry was found in all available crystal structures of metal bis(porphyrinates)^[12]. Double-deckers derived from monosubstituted tetraarylporphyrins have a sufficiently low symmetry (C_2) allowing the discrimination of isomers resulting from rigid configurations in solution by ^{19}F - and ^{1}H -NMR spectroscopy. Cerium(IV) bis $(p$ -hydroxyphenyl)tri-p-tolylporphyrinate] and several derivates were obtained by complexation of the respective porphyrins. They exist as a mixture of vicinal and transversal isomers, each with C_2 symmetry and square-antiprismatic coordination geometry in a 1:1 ratio. Variable-temperature ${}^{1}H$ - and ${}^{19}F$ -NMR spectra have shown that their square antiprism is quite rigid, i. e. rotation of the two tetraarylporphyrin ligands with respect to each other does not occur up to $413 \text{ K}^{[13]}$. The nitration of Zr(ttp), in the peripheral pyrrole positions afforded a mononitro derivative $Zr(ttp)(ttpNO_2)$. The ¹H-NMR spectrum of the latter shows eight methyl signals of the p-tolyl groups up to 150"C, indicating that the two porphyrin macrocycles are not rotating with respect to each other on the NMR time scale^[14].

Since octaalkylporphyrins have a higher electron density at the porphyrin ring as compared with tetraarylporphyrins, it seemed worthwile to compare the structure in solution and the rigidity of cerium (IV) and zirconium (IV) bis(porphyrinates) derived from these two series of porphyrins. In this paper the synthesis, characterization, and variable-temperature 'H-NMR spectra of **bis(2,3,7,8,12,13,17,18-octaethyl-5-methylporphyrinato)cerium(Iv)** and -zirconium(IV) [Ce(oemep)₂ and Zr(oemep)₂] derived from 2,3,7,8, 12,13,17,18-octaethyl-5-methylporphyrin^[15] [1, H_2 (oemep)] are described. In these double-deckers, the meso-(5-)methyl groups lower the symmetry to C_2 , hopefully allowing the observation of isomers by IH-NMR spectroscopy.

Synthesis of Cerium(IV) and Zirconium(IV) Bis(octaethy1-5-methylporphyrinates)

The preparation of the symmetrical bis(octaethy1porphyrinates) Ce(oep)₂ and Zr(oep)₂ from H₂(oep) was already described^[3-5]. The synthesis of the analogous cerium and zirconium sandwich complexes derived from **1** can be achieved in the same way. Treatment of $Li₂(oemep)$ [pre-

[[]O] Part LXIX: **J. W.** Buchler, **M.** Eberle, *Chem. Ber.* **1995,** *128,* ¹¹³¹- 1133.

1: $H₂(oemep)$

pared in situ by addition of n-butyllithium to a solution of $H₂(oemep)$ in 1,2,4-trichlorobenzene] with the acetylacetonate Ce(acac)₃ \cdot H₂O in boiling 1,2,4-trichlorobenzene (TCB) yielded pure $Ce(oemep)_2$ after chromatographic workup (eq. 1) on alumina. Crystallization from $CH₂Cl₂/MeOH$ afforded the cerium complex as blue-violet crystals.

$$
2 \text{Li}_2(\text{ocmep}) + \text{Ce(acac)}_3 \cdot H_2O \xrightarrow{-7\text{CB}, 200\text{°C}, O_2} \text{Ce(ocmep)}_2 \quad (1)
$$

The new double-decker $Zr(\text{oemep})_2$ was prepared from zirconocene dichloride, $Zr(cp)_{2}Cl_{2}$, and $Li_{2}(oemep)$ in refluxing 1,2,4-trichlorobenzene (eq. 2) and purified by chromatography on alumina, The complex was obtained **as** a blue powder after crystallization from $CH₂Cl₂/MeOH$. yielded pure Ce(oemep)₂ after chromatographic workup
(eq. 1) on alumina. Crystallization from CH₂Cl₂/MeOH af-
forded the cerium complex as blue-violet crystals.
2 Li₂(oemep) + Ce(acac)₃ · H₂O $\frac{TCB, 200 \text{ °C},$

$$
Zr(ep)_2Cl_2 + 2 Li_2(oemep) \xrightarrow{-TCB, 200\degree C} Zr(oemep)_2
$$
 (2)

Spectral Characterization of the New Double-Deckers

UV/Vis Spectra: The UV/Vis spectra of the new doubledeckers $Ce(oemep)_2$ and $Zr(oemep)_2$ resemble their analogs $Ce(oep)$ and $Zr(oep)$, respectively. Due to the methyl substituent in *meso* position of the porphyrin system the B band and all the visible bands of H_2 (oemep)^[15] are redshifted as compared with the appropriate bands of $H₂(oep)^[16]$. This was found for the complexes Ce(oemep)₂ and $Zr(oemep)_2$ as compared with their analogs $Ce(oep)_2$ and $Zr(\text{oep})_2$, respectively, for the B bands and most of the visible bands as well (Table 1, the bands were labeled **as** performed earlier for closely approached porphyrin ligands in sandwich complexes^[17a]). The spectrum of Ce(oemep)₂ (Figure la) is just bathochromically shifted as compared with the spectrum of $Ce(\text{oep})_2$. The effect of an introduction of meso-methyl groups is more complicated for zirconium: as compared with the spectrum of $Zr(\text{oep})_2$, the spectrum of $Zr(\text{oemep})_2$ shows bathochromic shifts only for the B, O'' , and the $O(0,0)$ bands, while the maxima of the Q(1,O) and **Q'** bands display hypsochromic shifts. The shape of the Q(0,O) band is different (Figure lb). This band shows two maxima for $Zr(\text{oemep})_2$ and only one for $Zr(\text{oep})_2$ which could express the presence of isomers in the case of Zr(oemep),.

IH-NMR Spectra: The 'H-NMR spectra of symmetrical $Ce(\text{oep})_2^{[3]}$ and $Zr(\text{oep})_2^{[5]}$ were already discussed in detail. The spectra of the corresponding *meso*-methyl derivatives differ significantly from those (see Figure 2). **As** typical fea-

tures of M(oep), sandwich complexes they show the splitting of the signals of the diastereotopic methylene protons for the *endo-* and **exo-H** atoms. The loss of symmetry due to the meso-methyl substitution leads to several signals of the methylene and methyl groups. The resolution of the spectra is not high enough to assign the methylene and methyl proton signals definitely to a fixed methylene and methyl group, respectively.

Table 1. UV/Vis spectra of metal(IV) bis(porphyrinates) $M(p)_2$ (λ_{max} [nm], Ig ε in parentheses, at 25° C in CH₂Cl₂)

M(p)	в	a"	Q(1,0)	Q(0,0)	Ō.
$Ce($ oep $)_2$	378	467	530	573	646.6^{2}
	(5.21)	(3.92)	(3.77)	(4.24)	(3.55)
$Ce(oemep)$ ₂	388.9	482.6	540.2	581.9	647.0
	(5.22)	(4.01)	(3.87)	(4.04)	(3,44)
Zr (cep) ₂	383	490	550	592	750 ^{b)}
	(5.22)	(4.10)	(3.78)	(4.39)	(2.72)
Zr (oemep) ₂	391.2	501.9	546.7	597.6/609.9	719.6
	(5.05)	(4.02)	(3.72)	(3.94) (3.91)	(3.17)

a) Most recent UV/Vis spectrum (Bruins Omega 10). - b) Taken from ref.^[6a].

Figure 1. UV/Vis spectra of Ce(oemep)₂ (a) and Zr (oemep)₂ (b) $(CH_2Cl_2$, room temperature)

If a stable square antiprismatic coordination geometry, as found for cerium bis(tetraary1porphyrinates) is assumed, two different geometrical isomers must be discussed for the $M(\text{oemep})_2$ complexes $(M = Ce, Zr)$ in which the *meso*methyl groups of the two ligands adopt vicinal **(A)** or transversal (B) configurations (Scheme 1). Each of the two isomers has C_2 symmetry and hence each exists as a racemate.

The same number of diastereotopic protons results for the vicinal and transversal isomers. In each isomer there are one meso-methyl group, three different methyne protons, eight different methyl groups, and 16 different methylene protons (due to the diastereotopy of the methylene protons in axially dissymmetric porphyrins, there are 16 methylene groups^[3,5]). The maximum number of two different *meso*- methyl signals (singlets), six methyne proton signals (singlets), 16 methyl proton signals (triplets), and 32 methylene proton signals (quadruplets) for two isomers is neither seen for the cerium nor for the zirconium complex (Figure **2).** Due to the movement of the ethyl groups both the methyl proton signals as well as the methylene proton signals of the $M(\text{oemep})_2$ sandwich complexes are broad and not helpful for the determination of the isomers. Separate signals of methyl protons or methylene protons belonging to different isomers cannot be distinguished.

Scheme 1. A: vicinal, **B**: transversal isomer of $M(\text{oemep})_2$ ($M =$ Ce, Zr). C_2 in **A** or **B** indicates the twofold symmetry axes

Figure 2. ¹H-NMR spectra of Ce(oemep)₂ (a) and Zr (oemep)₂ (b) ([D8]toluene, S scale, int. TMS. 300 MHz, **303 K)**

The *meso*-methyl signals of Ce(oemep)₂ and Zr(oemep)₂ appear each as one singlet. This can be explained by accidental isochronism which leads to a superposition of the signals of the vicinal and transversal isomers. The chemical shifts of the meso-methyl protons increase in the series H_2 (oemep) < Zr (oemep)₂ < Ce(oemep)₂, amounting to 4.61, 4.73, and 5.06 ppm, respectively. The reason for this behavior is not clear. This may indicate that on more closely compressing the two porphyrin rings these protons move into a more deshelding region of the anisotropy cone. In contrast, the methyne protons may move to a more shielding region since their resonances are slightly shifted to higher field $(\delta = 9.83/10.03, 8.94...9.11,$ and 8.9....9.2, respectively).

Finally, the pattern of the meso-methyne proton signals of both $Ce(\text{oemep})_2$ and $Zr(\text{oemep})_2$ shows the presence of isomers. Both the vicinal and the transversal isomers have three non-equivalent methyne protons. This should give rise to a maximum of three singlets with equal intensity for each isomer if there is no accidental isochronism of the methyne protons. In the case of free rotation of the porphyrin ligands with respect to each other two singlets in the ratio 2:l should be observed as found for the free porphyrin. The patterns of signals appearing in the methylene region of $Ce(\text{oemep})_2$ and $Zr(\text{oemep})_2$ in any case is more complex and demonstrates the presence of different isomers.

Therefore, it is proposed that Ce(oemep), and Zr(oemep), both consist of a mixture of vicinal and transversal isomers (Scheme 1). The methyne signal patterns can be explained as unsymmetrical superpositions of mesomethyne signals of the two geometrical isomers. The somewhat different shapes of the signal patterns of Ce(oemep), and Zr (oemep)₂ reflect the varying ligand-ligand distance which is shorter for $Zr(\text{oemep})_2$ and causes stronger ringcurrent effects in the latter.

'H-NMR spectra of both complexes were recorded in $[D₈]$ toluene between 203 and 373 K to investigate the rotational rigidity of the double-decker system. To simplify the interpretation of the spectra only the signals of the *meso-methyne protons are considered (Figure 3). Between* 203 and 373 **K,** neither for the cerium nor for the zirconium complex the meso-methyne proton signals appear as two singlets in the ratio 2: 1. Thus, free rotation of the porphyrin ligands with respect to each other does not occur up to 373 K. While the pattern of the *meso*-methyne signals of the zirconium complex is almost unchanged over the whole range of temperatures, the signals of the cerium complex merge to three sharp singlets in the ratio 1:2:3. This could indicate an increased movement of the two porphyrin macrocycles with respect to each other in the case of the cerium complex but by no means free rotation of the ligands.

Electrochemical Characterization of the Double-Deckers

The cyclic voltammograms of the new sandwich complexes $Ce(orem)_2$ and $Zr(omen)_2$ as well as of the free porphyrin H_2 (oemep) were measured in CH_2Cl_2 and compared with the electrochemical data of their oep analogs Ce(oep)₂^[7a], Zr(oep)₂^[5a], and H₂(oep)^[18], respectively. The porphyrins $H_2($ oep) and $H_2($ oemep) show two reversible oxidations and one reversible reduction in their cyclic voltammograms. Due to the electron-donating methyl group, $H₂(oemep)$ is easier to oxidize than $H₂(oep)$, i. e. both the first (E_2) and the second (E_1) oxidation potential is smaller than for $H_2($ oep) (Table 2). Reduction of $H_2($ oemep), on the other hand, occurs at a more negative potential *(E3).*

The complexes $Ce(orem)_2$ and $Zr(omen)_2$ both show two reversible oxidation steps as found for $Ce(oep)_2$ and $Zr(\text{oep})_2$. Due to the methyl groups of the porphyrin system in $Ce(oemep)₂$ and $Zr(oemep)₂$, both oxidation steps are **FULL PAPER**

Figure 3. ¹H resonance signals of the *meso*-methyne protons of Ce(oemep)₂ (a) and Zr(oemep)₂ (b) ([D₈]toluene, δ scale, int. TMS, 300 **MHz,** 303 K)

Table 2. Comparison of the redox potentials of (oep) and (oemep) derivatives $\rm (CH_2Cl_2, NBu_4PF_6$ as supporting electrolyte, calomel electrode)

a) Quasireversible. - **b,** Irreversible (anodic peak given).

facilitated as compared with $Ce(oep)_2$ and $Zr(oep)_2$ (Table *2,* redox steps are labeled according to eq. 3). The oxidation potentials of the zirconium complexes E_1 and E_2 reflect the effect of the smaller ionic radius of this ion as compared with cerium: both oxidations are facilitated^[5a].

$$
\begin{array}{ccccccc}\n[H_{1}(p)_{2}]^{2+} & \stackrel{E_{1}}{\Rightarrow} & [M_{1}(p)_{2}]^{+} & \stackrel{E_{2}}{\Rightarrow} & [M_{1}(p)_{2}]^{+} & \stackrel{E_{3}}{\Rightarrow} & [M_{1}(p)_{2}]^{-} \\
[H_{2}(p)] & [H_{2}(p)] & [H_{2}(p)] & [H_{2}(p)] & [H_{2}(p)] & (3)\n\end{array}
$$

As found in the case of $Ce(oep)_2$, the quasireversible reduction of Ce(oemep), (E_3) is the reduction of the cerium ion and not of the porphyrin rings. While for $Zr(\text{oep})_2$ a reversible reduction at -1.663 V was observed, the reduction of $Zr(\text{oemep})_2$ occured irreversibly at -1.116 V. The instability of the $[Zr(\text{oemep})_2]$ ⁻ anion could be explained by a more rapid protonation (by water impurities in the solvent) and disproportionation of the radical anions as compared with Zr(oep),.

Financial support of the *Deutsche Forsehungsgemeinschaft* and the *Fonds der Chemischen Industrie* is gratefully acknowledged. We thank Professor Dr. *J. J. Veith* and Mr. *M. Fischer* for recording the mass spectra, Dr. *S. Bruun, K. Jungk,* and *K.-0. Runzheimer* for measuring the NMK spectra, and *Buyer AG* for a gift of trichloro benzene.

Experimental

Spectrometers, sources of analytical data, and chemicals used were specified in a previous paper of this series^[13]. $-$ 2,3,7,8,12,13,17,18-Octaethyl-5-methylporphyrin^[15] (1) was prepared from 2,3,7,8,12,13,17,18-Octaethylporphyrin^[19] according to literature procedures. UV/Vis of 1: λ_{max} (lg ε): 406.4 nm (5.22), **506.9** (4.12), 541.1 **(3.76), 577.0** *(3.73),* **630.5** (3.17).

Bis(2.3,7,8,12,13,17,18-oetaethyl-5-methylporphyrinuto) cerium(IV) $[Ce(meoep)_2]$: A solution of 0.8 mmol of nBuLi in 0.5 ml of hexane was added to a solution of 200 mg **(0.36** mmol) **of** $H₂(oemep)$ in 60 ml of TCB under nitrogen. The solution was stirred for 10 min at room temp. After addition of *738* mg **(1.62** mmol) of $Ce(acac)$, $H₂O$ the solution was heated at reflux for 4 h. After cooling and removal of the TCB in vacuo the residue was treated with **15** ml of toluene and filtered. The filtrate was chromatographed on an alumina column (I, basic, 7×2.5 cm). The first brown fraction was eluted with toluene and contained $Ce(orem)_2$. The second violet fraction contained unreacted $H₂(oemep)$. Evaporation of the solvent of the first fraction and recrystallization of the residue from $CH_2Cl_2/MeOH$ (1:1) yielded 124 mg (56%) of the product as blue-violet crystals. - MS, m/z (%): 1232 (100) [M⁺]. $-$ UV/Vis (CH₂Cl₂): $λ_{max}$ (lg $ε) = 388.9$ nm (5.22), 482.6 (4.01),

540.2 (3.87), 581.9 (4.04), 647.0 (3.44). - IR (KBr), seven most intense bands: $\tilde{v} = 2965$ cm⁻¹, 2930, 2870, 1460, 1058, 1014, 933. $-$ ¹H NMR ([D₈]Toluene): $\delta = 0.8 - 2.0$ (m, 48H, CH₂CH₂). 3.95-4.15 and 4.15-4.30 (m, 20H and m, 12H; respectively; CHzCH,), 5.06 (s, 6H, *meso-CH3),* 8.94-9.11 (m, 6H, *mew-H).* - CV (CH₂Cl₂/NBu₄PF₆): 0.675 V, 0.130, -0.614. - C₇₄H₉₂CeN₈ (1233.7): calcd. C 72.04, H 7.52, N 9.08; found C 71.91, H 7.45, N 9.14.

Bis(2,3,7,8,12,13,17,18-octaethyl-S-methyIporphyrinato) zirconium(IV) [Zr(meoep)₂]: A solution of 1.44 mmol of nBuLi in 0.9 ml of hexane was added to a solution of 200 mg (0.36 mmol) of H,(ocmep) in 50 ml TCB under nitrogen. After stirring at room temp. for 15 min, 210 mg (0.72 mmol) of $Zr(cp)_{2}Cl_{2}$ was added and the solution heated at reflux for **2** h. After removal of TCB in vacuo the residue was treated with 20 ml of cyclohexane and filtered to remove insoluble unreacted H_2 (oemep) and an unidentified zirconium monoporphyrinate. The cyclohexane solution was chromatographed on alumina (II, basic, $3.5 \cdot 10$ cm). Fractions were obtained as follows: with cyclohexane/toluene (1:1) an orange forerun of unknown composition, with toluene a blue-green fraction 1 containing Zr (oemep),, with CH₂Cl₂ a reddish-brown fraction 2 of unreacted H_2 (oemep), with CH₂Cl₂/MeOH (9:1) fraction 3 which contained again Zr(oemep),, and then a brown fraction **4** with an unknown decomposition compound. The solvent of the combined fractions 1 and 3 were evaporated in vacuo, and the residue was crystallized from 5 ml of $CH_2Cl₂/MeOH$ (1:1) to afford 48 mg (22%) of $Zr(\text{oemep})_2$ as blue microcrystals. - MS, m/z (%): 1182 (100) $[M^+]$. – UV/Vis (CH₂Cl₂): λ_{max} (lg ε) = 391.2 nm (5.05), 501.9 (4.02), 546.7 (3.72), 597.6 (3.94), 609.9 (3.91), 719.6 (3.17). $-$ IR (KBr), six most intense bands: $\tilde{v} = 2965$ cm⁻¹, 2930, 2870, 1460, 1058, 952. - ¹H NMR ([D₈]Toluene): $\delta = 0.8 - 2.05$ (m, 48 H, CH₂CH₃), 3.38-3.53 (m, 4H, CH₂CH₃), 3.53-3.95 (m, 18H, CH₂CH₃), and 3.95-4.25 (m, 10H, CH₂CH₃), 4.73 (s, 6H, *meso-*CH₃), 8.90-8.96 and 9.14-9.20 (m, 6H, *meso-H*). - CV (CH₂Cl₂/ NBu₄PF₆): 0.556 V, -0.038, -1.16. - C₇₄H₉₂N₈Zr (1184.8): calcd. *C 75.02, H 7.83, N 9.46; found C 74.20, H 7.04, N 8.44.*

- ^[2] J. W. Buchler, H. G. Kapellmann, M, Knoff, K. L. Lay, S. Pfeifer, *Z. Naturforsch., Part B*, 1983, 38, 1339-1345.
- **L3j** J. **U!** Buchler, A. De Cian, J. Fischer, M. Kihn-Botulinski, H. Paulus, **R.** Weiss, *d Am. Chem. SOC.* **1986,** 108,3652-3659.
- 14] [4a1 **G.** S. Girolami, **S.** N. Milam, K. N. Suslick, *Inorg. Chem.*

1987, *26,* 343-344. - **[4b1** G. **S.** Girolami, **S.** N. Milam, K. N. **1987**, 26, 343–344. – ^[4b] G. S. Girolami, S. N. Milam, K. N. Suslick, *J. Am. Chem. Soc.* **1988**, *10*, 2011–2012. ^[51] ^[5a] J. W. Buchler, A. De Cian, J. Fischer, P. Hammerschmitt, R.

- Weiss, *Chem. Ber.* **1991**, *124*, **1051**-1058. ^[5b] J. W. Buchler, **A.** De Cian, **S.** Elschner, **J.** Fischer, P. Hammerschmitt, R. Weiss, *Chem. Beu.* **1992,** 125, 107-115.
- L6] S.-H. Cho, G. S. Girolami, I? A. Gorlin, H.-J. Kim, K. Kim,
- W. S. Lee, K. S. Suslick, *Inorg. Chem.* **1991**, *30*, 2652–2656. ^[7] ^[7a] J. W. Buchler, K. Elsässer, M. Kihn-Botulinski, B. Scharbert, *Angew. Chem.* **1986,** *98,* 257-258; *Angew. Chem. Int. Ed Engl.* **1986,** 25, 286-87. - [7bl J. W. Buchler, *Comments Inorg Chem.* **1987,** 6, 175-191. – ^[7c] **J. W.** Buchler, B. Scharbert, *J. Am. Chem. SOC.* **1988,** 110,4272-4276.
- ^[8] J.-H. Perng, J. K. Duchowski, D. F. Bocian, J. Phys. Chem. **1991**, 95, 1319–1323
- pa] J. Deisenhofer, 0. Epp, R. Huber, H. Michel, K. Miki, *^d Mol. Biol.* **1984,** *80,* 385-398. [9b1 J. Deisenhofer, 0. **Epp,** R. *Mol. Biol.* **1984**, *80*, 385–398. – ^[96] J. Deisenhofer, O. Epp, R. Huber, H. Michel, K. Miki, *Nature* **1985**, 318, 618–624. ^[9c] J. Deisenhofer, R. Huber, H. Michel, *Nachr. Chem. Tech. Lab.* **1986**, 34, 416–422. *Lab.* **1986,** 34, 416-422.
- *['O]* **[Ioa]** J. P. Collman, P. **S.** Wagenknecht, J. E. Hutchison, *Angew Chem.* **194,** *106,* 1620-1639. [Iob] R. Karaman, A. Blasko, **S.** Jeon, 0. Almarsson, T. C. Bruice, *Znorg Chem.* **1993,** 32, 2562–2569. - ^[10c] V. V. Borovkov, G. V. Ponomarev, Y. Sakata, A. Shul'ga, K.-I. Sugiura, *Tetrahedron Lett.* **1993**, 34, A. Shul'ga, K.-I. Sugiura, *Tetrahedron Lett.* **1993**, 34, 2153–2156. – ^[100] M. O. Senge, K. R. Gerzevske, M. G. H. Vicente, T. P. Forsyth, K. M. Smith, Angew. Chem. 1993, 105, 745–747. – ^[10e] J. P. Collman, J. M. Garner, R. T. Hembre, Y. Ha, *J. Am. Chem. Soc.* 1992, 114, 1292–1301. – ^{[101}] J. P. Collman, J. P. Arnold, J. P. Fitzg *Porphyrins* (Ed.: D. Dolphin), Academic Press, New York 1978,
vol. I, p. 389–483. – ^[10h] H.-J. Kim, D. Whang, Y. Do, K. Kim, *'Chem. Lett.* **1993,** 807-810.
- [111 J. R. Reimers, N. **S.** Hush, *J Am. Chem. SOC.* **1995,** 117, $1302 - 1308$.
- [I2] D. Chdbach. M. Lachkar. A. De Cian. J. Fischer, R. Weiss, *New* .I *Chem.* **1992.** *16,* 431-433.
- J. Chem. 1992, 16, 431-433.
^[13] J. W. Buchler, V. Eiermann, H. Hanssum, G. Heinz, H. Rüterjans, M. Schwarzkopf, *Chem. Ber.* 1994, ¹²⁷, 589-595.
- [I4] G. **S.** Girolami, **l?** A. Gorlin, K. S. Suslick, *Inorg. Chem.* **1994,**
- *33,* 626-627. **[I5] [I5=]** H. H. Inhoffen, J.-H. Fuhrhop, *H.* Voigt, **H.** Brockmann, *Liebigs Ann. Clzem.* **1966,** 695, 133-143. K. M. Smith, G. M. Bisset, M. J. Bushell, *Bioorg. Chem.* **1980,** *9,* 1-26.
-
- ^[16] **J. W. Buchler** in ref.^[10g], vol. **I**, p. 389–483.

^[17] ^[17a] O. Bilsel, J. W. Buchler, P. Hammerschmitt, J. Rodriguez, D. Holten, *Chem. Phys. Lett.* **1991**, *182*, 415–421. ^[176] O. Bilsel, J. Rodriguez, S. N. Milam, **F!** A. Gorlin, G. S. Girolami, **D.** Holten, *Chem. Phys. Lett.* **1991**, *182*, 415–421. – ^[176] O.
B. Holten, *Chem. Phys. Lett.* **1991**, *182*, 415–421. – ^[176] O.
K. S. Suslick, D. Holten, *J. Am. Chem. Soc.* **1992**, *114*,
6528–6538 – [^{17e]} K. **K.** S. Suslick, D. Holten, *J. Am. Chem. Soc.* **1992**, *114*, 6528–6538. - ^[17c] **K.** M. Kadish, G. Moninot, Y. Hu, D. Du-bois, A. Ibnlfassi, J.-M. Barbe, R. Guilard, *J. Am. Chem. Soc.* **1993**, *115*, 8153–8166
- ^[18] J.-H. Fuhrhop, K. M. Kadish, D. G. Davis, J. Am. Chem. Soc. **1973,** 95, 5140-5147.
- *[I9]* **1.** Ono, H. Kawamura, M. Dougauchi, K. Maruyama, *Tetm hedron* **1990,** *46,* 7483-7496.

[95133]

^[1] Abbreviations used: $(p)^{2-}$, $(\text{oep})^{2-}$, $(\text{ttp})^{2-}$, $(\text{oemep})^{2-}$, dianions of a general porphyrin, 2,3,7,8,12,13,17,18-octaethylporphyrin, **tetrakis(4methyIphenyl)porphyrin,** 2,3,7,8,12,13J7: 18-octa**ethyl-5-methylporphyrin,** respectively: H(acac), acetylacetone;